Folate deficiency exacerbates apoptosis by inducing hypomethylation and resultant overexpression of DR4 together with altering DNMTs in Alzheimer's disease.
نویسندگان
چکیده
This study was to evaluate patterns of gene expression and promoter methylation of DR4 from peripheral circulating blood lymphocytes of AD patients and folate-deficiency medium cultured neuroblast cells, and also expression levels of DNMT1, DNMT3a, and MECP2. Blood samples of 25 pairs of AD patients and age- and sex-matched controls were collected. SH-SY5Y cells were cultured with folate-deficiency medium. Bisulfite cloning coupled with sequencing was employed to analyze methylation levels of DR4 gene promoters, and quantitative real time PCR (qRT-PCR) was used to detect gene expression levels of DR4, and also DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3a (DNMT3a) and methyl CpG binding protein 2 (MECP2). Folate concentration was calculated in serum of blood samples. 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay was used to analyze cell viability. The results showed that, the promoter of DR4 was hypomethylated in AD patients and cells cultured in folate-deficiency medium and had site-specific changes (P < 0.05), and these sites were mostly at or nearby some key transcription factor binding sites. Accordance with the hypomethylation, increased expression level of DR4 was observed (P < 0.05). DNMT1 and DNMT3a mRNA level were elevated (P < 0.05) in AD patients and folate deficient medium cultured cells compared with controls (P < 0.05), together with lower folate concentration in AD. MTT assay showed that folate deficiency inhibited cell growth. In summary, folate deficiency can induce apoptosis by increasing DR4 expression with DNA promoter hypomethylation in AD, together with upregulating DNMTs expression, which may be associated with folate deficiency-induced DNA damage.
منابع مشابه
Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملA Study of the Impact of Death Receptor 4 (DR4) Gene Polymorphisms in Alzheimer's Disease.
BACKGROUND Excessive apoptosis is believed to play a role in many degenerative and non-degenerative neurological diseases including Alzheimer's disease (AD). Much recent data suggest that apoptotic mechanisms may represent the missing link between Aβ deposition and proteolysis of tau protein. However, there is emerging evidence that apoptotic mechanisms may play a role in Alzheimer's Disease pa...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملSerum Levels of Homocysteine, Vitamin B12, and Folic Acid in Patients with Alzheimer’s Disease
Background: Alzheimer's disease is the most common form of dementia in the elderly. Serum levels of homocysteine have been related to increased cortical and hippocampal atrophy. We aimed to determine the serum levels of homocysteine, folate, and vitamin B12 in patients with Alzheimer's disease. Methods: Blood levels of homocysteine and its biological determinants, folate, and vitamin B12 were m...
متن کاملp53 upregulates death receptor 4 expression through an intronic p53 binding site.
Death receptor 4 (DR4) is one of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors and triggers apoptosis on ligation with TRAIL or overexpression. Our previous study demonstrated that DR4 expression could be regulated in a p53-dependent fashion. In the present study, we have demonstrated that DR4 is a p53 target gene and is regulated by p53 through a functional intr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of clinical and experimental medicine
دوره 7 8 شماره
صفحات -
تاریخ انتشار 2014